Package 'elbird'

Title: Blazing Fast Morphological Analyzer Based on Kiwi(Korean Intelligent Word Identifier)
Description: This is the R wrapper package Kiwi(Korean Intelligent Word Identifier), a blazing fast speed morphological analyzer for Korean. It supports configuration of user dictionary and detection of unregistered nouns based on frequency.
Authors: Chanyub Park [aut, cre]
Maintainer: Chanyub Park <[email protected]>
License: LGPL (>= 3)
Version: 0.2.5
Built: 2024-10-31 04:06:14 UTC
Source: https://github.com/mrchypark/elbird

Help Index


Simple version of analyze function.

Description

Simple version of analyze function.

Usage

analyze(text, top_n = 3, match_option = Match$ALL, stopwords = FALSE)

Arguments

text

target text.

top_n

integer: Number of result. Default is 3.

match_option

Match: use Match. Default is Match$ALL

stopwords

stopwords option. Default is TRUE which is to use embaded stopwords dictionany. If FALSE, use not embaded stopwords dictionany. If char: path of dictionary txt file, use file. If Stopwords class, use it. If not valid value, work same as FALSE. Check analyze() how to use stopwords param.

Examples

## Not run: 
  analyze("Test text.")
  analyze("Please use Korean.", top_n = 1)
  analyze("Test text.", 1, Match$ALL_WITH_NORMALIZING)
  analyze("Test text.", stopwords = FALSE)
  analyze("Test text.", stopwords = TRUE)
  analyze("Test text.", stopwords = "user_dict.txt")
  analyze("Test text.", stopwords = Stopwords$new(TRUE))

## End(Not run)

Get kiwi language model file.

Description

Get kiwi language model file.

Usage

get_model(size = "base", path = model_home(), clean = FALSE)

Arguments

size

"small", "base", "large" model. default is "base". Also "all" available.

path

path for model files. default is model_home().

clean

remove previous model files before get new.

Source

https://github.com/bab2min/Kiwi/releases

Examples

## Not run: 
  get_model("small")

## End(Not run)

Kiwi Class

Description

Kiwi class is provide method for korean mophological analyze result.

Methods

Public methods


Method print()

print method for Kiwi objects

Usage
Kiwi$print(x, ...)
Arguments
x

self

...

ignored


Method new()

Create a kiwi instance.

Usage
Kiwi$new(
  num_workers = 0,
  model_size = "base",
  integrate_allomorph = TRUE,
  load_default_dict = TRUE
)
Arguments
num_workers

int(optional): use multi-thread core number. default is 0 which means use all core.

model_size

char(optional): kiwi model select. default is "base". "small", "large" is available.

integrate_allomorph

bool(optional): default is TRUE.

load_default_dict

bool(optional): use defualt dictionary. default is TRUE.


Method add_user_word()

add user word with pos and score

Usage
Kiwi$add_user_word(word, tag, score, orig_word = "")
Arguments
word

char(required): target word to add.

tag

Tags(required): tag information about word.

score

num(required): score information about word.

orig_word

char(optional): origin word.


Method add_pre_analyzed_words()

TODO

Usage
Kiwi$add_pre_analyzed_words(form, analyzed, score)
Arguments
form

char(required): target word to add analyzed result.

analyzed

data.frame(required): analyzed result expected.

score

num(required): score information about pre analyzed result.


Method add_rules()

TODO

Usage
Kiwi$add_rules(tag, pattern, replacement, score)
Arguments
tag

Tags(required): target tag to add rules.

pattern

char(required): regular expression.

replacement

char(required): replace text.

score

num(required): score information about rules.


Method load_user_dictionarys()

add user dictionary using text file.

Usage
Kiwi$load_user_dictionarys(user_dict_path)
Arguments
user_dict_path

char(required): path of user dictionary file.


Method extract_words()

Extract Noun word candidate from texts.

Usage
Kiwi$extract_words(
  input,
  min_cnt,
  max_word_len,
  min_score,
  pos_threshold,
  apply = FALSE
)
Arguments
input

char(required): target text data

min_cnt

int(required): minimum count of word in text.

max_word_len

int(required): max word length.

min_score

num(required): minimum score.

pos_threshold

num(required): pos threashold.

apply

bool(optional): apply extracted word as user word dict.


Method analyze()

Analyze text to token and tag results.

Usage
Kiwi$analyze(text, top_n = 3, match_option = Match$ALL, stopwords = FALSE)
Arguments
text

char(required): target text.

top_n

int(optional): number of result. Default is 3.

match_option

match_option Match: use Match. Default is Match$ALL

stopwords

stopwords option. Default is FALSE which is use nothing. If TRUE, use embaded stopwords dictionany. If char: path of dictionary txt file, use file. If Stopwords class, use it. If not valid value, work same as FALSE.

Returns

list of result.


Method tokenize()

Analyze text to token and pos result just top 1.

Usage
Kiwi$tokenize(
  text,
  match_option = Match$ALL,
  stopwords = FALSE,
  form = "tibble"
)
Arguments
text

char(required): target text.

match_option

match_option Match: use Match. Default is Match$ALL

stopwords

stopwords option. Default is FALSE which is use nothing. If TRUE, use embaded stopwords dictionany. If char: path of dictionary txt file, use file. If Stopwords class, use it. If not valid value, work same as FALSE.

form

char(optional): return form. default is "tibble". "list", "tidytext" is available.


Method split_into_sents()

Some text may not split sentence by sentence. split_into_sents works split sentences to sentence by sentence.

Usage
Kiwi$split_into_sents(text, match_option = Match$ALL, return_tokens = FALSE)
Arguments
text

char(required): target text.

match_option

match_option Match: use Match. Default is Match$ALL

return_tokens

bool(optional): add tokenized resault.


Method get_tidytext_func()

set function to tidytext unnest_tokens.

Usage
Kiwi$get_tidytext_func(match_option = Match$ALL, stopwords = FALSE)
Arguments
match_option

match_option Match: use Match. Default is Match$ALL

stopwords

stopwords option. Default is TRUE which is to use embaded stopwords dictionary. If FALSE, use not embaded stopwords dictionary. If char: path of dictionary txt file, use file. If Stopwords class, use it. If not valid value, work same as FALSE.

Returns

function

Examples
\dontrun{
   kw <- Kiwi$new()
   tidytoken <- kw$get_tidytext_func()
   tidytoken("test")
}

Method clone()

The objects of this class are cloneable with this method.

Usage
Kiwi$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Examples

## Not run: 
  kw <- Kiwi$new()
  kw$analyze("test")
  kw$tokenize("test")
  
## End(Not run)

## ------------------------------------------------
## Method `Kiwi$get_tidytext_func`
## ------------------------------------------------

## Not run: 
   kw <- Kiwi$new()
   tidytoken <- kw$get_tidytext_func()
   tidytoken("test")

## End(Not run)

Analyze Match Options.

Description

ALL option contains URL, EMAIL, HASHTAG, MENTION.

Usage

Match

Format

An object of class EnumGenerator of length 13.

Examples

## Not run: 
 Match
 Match$ALL

## End(Not run)

Verifies if model files exists.

Description

Verifies if model files exists.

Usage

model_exists(size = "all")

Arguments

size

model size. default is "all" which is true that all three models must be present.

Value

logical model files exists or not.

Examples

## Not run: 
  get_model("small")
  model_exists("small")

## End(Not run)

A simple exported version of kiwi_model_path() Returns the kiwi model path.

Description

TODO explain ELBIRD_MODEL_HOME

Usage

model_home()

Value

character: file path

Examples

model_home()

Verifies if models work fine.

Description

Verifies if models work fine.

Usage

model_works(size = "all")

Arguments

size

model size. default is "all" which is true that all three models must be present.

Value

logical model work or not.

Examples

## Not run: 
  get_model("small")
  model_works("small")

## End(Not run)

Split Sentences

Description

Some text may not split sentence by sentence. split_into_sents works split sentences to sentence by sentence.

Usage

split_into_sents(text, return_tokens = FALSE)

Arguments

text

target text.

return_tokens

add tokenized resault.

Examples

## Not run: 
 split_into_sents("text")
 split_into_sents("text", return_tokens = TRUE)

## End(Not run)

Stopwords Class

Description

Stopwords is for filter result.

Methods

Public methods


Method print()

print method for Stopwords objects

Usage
Stopwords$print(x, ...)
Arguments
x

self

...

ignored


Method new()

Create a stopwords object for filter stopwords on analyze() and tokenize() results.

Usage
Stopwords$new(use_system_dict = TRUE)
Arguments
use_system_dict

bool(optional): use system stopwords dictionary or not. Defualt is TRUE.


Method add()

add stopword one at a time.

Usage
Stopwords$add(form = NA, tag = Tags$nnp)
Arguments
form

char(optional): Form information. Default is NA.

tag

char(optional): Tag information. Default is "NNP". Please check Tags.

Examples
 \dontrun{
  sw <- Stopwords$new()
  sw$add("word", "NNG")
  sw$add("word", Tags$nng)
  }

Method add_from_dict()

add stopword from text file. text file need to form "TEXT/TAG". TEXT can remove like "/NNP". TAG required like "FORM/NNP".

Usage
Stopwords$add_from_dict(path, dict_name = "user")
Arguments
path

char(required): dictionary file path.

dict_name

char(optional): default is "user"


Method remove()

remove stopword one at a time.

Usage
Stopwords$remove(form = NULL, tag = NULL)
Arguments
form

char(optional): Form information. If form not set, remove tag in input.

tag

char(required): Tag information. Please check Tags.


Method save_dict()

save current stopwords list in text file.

Usage
Stopwords$save_dict(path)
Arguments
path

char(required): file path to save stopwords list.


Method get()

return tibble of stopwords.

Usage
Stopwords$get()
Returns

a tibble for stopwords options for analyze() / tokenize() function.


Method clone()

The objects of this class are cloneable with this method.

Usage
Stopwords$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Examples

## Not run: 
  Stopwords$new()

## End(Not run)

## ------------------------------------------------
## Method `Stopwords$add`
## ------------------------------------------------

 ## Not run: 
  sw <- Stopwords$new()
  sw$add("word", "NNG")
  sw$add("word", Tags$nng)
  
## End(Not run)

Tag list

Description

Tags contains tag list for elbird.

Usage

Tags

Format

An object of class EnumGenerator of length 47.

Source

https://github.com/bab2min/Kiwi

Examples

## Not run: 
  Tags
  Tags$nnp
 
## End(Not run)

Simple version of tokenizer function.

Description

Simple version of tokenizer function.

Usage

tokenize(text, match_option = Match$ALL, stopwords = TRUE)

tokenize_tbl(text, match_option = Match$ALL, stopwords = TRUE)

tokenize_tidytext(text, match_option = Match$ALL, stopwords = TRUE)

tokenize_tidy(text, match_option = Match$ALL, stopwords = TRUE)

Arguments

text

target text.

match_option

Match: use Match. Default is Match$ALL

stopwords

stopwords option. Default is TRUE which is to use embaded stopwords dictionany. If FALSE, use not embaded stopwords dictionany. If char: path of dictionary txt file, use file. If Stopwords class, use it. If not valid value, work same as FALSE. Check analyze() how to use stopwords param.

Value

list type of result.

Examples

## Not run: 
  tokenize("Test text.")
  tokenize("Please use Korean.", Match$ALL_WITH_NORMALIZING)

## End(Not run)